استفاده از مدل هوش مصنوعی مرکب نظارت شده برای پیش بینی سطح آب زیرزمینی

Authors

عطاالله ندیری

دانشکده علوم طبیعی، دانشگاه تبریز فاطمه واحدی

دانشجوی کارشناسی ارشد دانشکده علوم طبیعی، دانشگاه تبریز اصغر اصغری مقدم

دانشکده علوم طبیعی، دانشگاه تبریز علی کدخدایی

دانشکده علوم طبیعی، دانشگاه تبریز

abstract

منابع آب زیرزمینی از مهم­ترین منابع تأمین آب هستند، لذا مدل­سازی آن­ها حائز اهمیت می­باشد. در این میان مطالعه و بررسی نوسانات سطح آب زیرزمینی از نظر مطالعات مدیریتی، ایجاد سازه­های مهندسی، مصارف کشاورزی و حصول آب­های زیرزمینی با کیفیت بالا از اهمیت بالایی برخوردار است. عمده تقاضا برای آب شرب و کشاورزی در دشت مشگین­شهر نیز از طریق آب زیرزمینی تأمین می­شود. در این تحقیق چهار مدل هوش مصنوعی که عبارتند از شبکه عصبی پیشرو، شبکه عصبی برگشتی، منطق فازی ساگنو و ماشین­بردار پشتیبان برای پیش­بینی سطح آب زیرزمینی استفاده شدند. با توجه به نزدیک بودن نتایج به دست آمده و با توجه به این مسئله که مدل­های مختلف در مراحل مختلف مدل­سازی نتایج متفاوتی ارائه دادند، انتخاب یکی از مدل­ها به عنوان مدل منتخب معقول به نظر نمی­رسید. لذا از ترکیب غیر خطی این چهار مدل که مدل هوش مصنوعی مرکب نظارت شده نامیده می­شود، برای ترکیب نتایج این مدل­ها استفاده شد تا نتایج به دست آمده تقویت شده و از توانایی مدل­های مختلف به طور هم­زمان استفاده شود. به منظور ارزیابی کارایی و دقت مدل­ها در پیش­بینی، از دو معیار مختلف rmse و r2 استفاده شد. نتایج نشان دادند که مدل scmai با مقادیر r2 برابر 85/0 و 90/0 به ترتیب برای پیزومترهای شماره 1 و 2 در مرحله آموزش بهترین پیش­بینی را نسبت به هر کدام از چهار مدل منفرد هوش مصنوعی ارائه کرده است. همچنین مدل scmai توانست rmse پیش­بینی را تا 9% درصد برای پیزومتر شماره یک و 17% درصد برای پیزومتر شماره دو کاهش دهد.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

استفاده از مدل هوش مصنوعی مرکب نظارت شده برای پیش‌بینی سطح آب زیرزمینی

منابع آب زیرزمینی از مهم­ترین منابع تأمین آب هستند، لذا مدل­سازی آن­ها حائز اهمیت می­باشد. در این میان مطالعه و بررسی نوسانات سطح آب زیرزمینی از نظر مطالعات مدیریتی، ایجاد سازه­های مهندسی، مصارف کشاورزی و حصول آب­های زیرزمینی با کیفیت بالا از اهمیت بالایی برخوردار است. عمده تقاضا برای آب شرب و کشاورزی در دشت مشگین­شهر نیز از طریق آب زیرزمینی تأمین می­شود. در این تحقیق چهار مدل هوش مصنوعی که عبا...

full text

پیش بینی سطح آب زیرزمینی با استفاده از مدل منطق فازی مرکب نظارت شده (مطالعه ی موردی: دشت مشگین شهر)

ارتقاء اطلاعات کمی به بهبود پیش‌بینی پارامتر‌های برف کمک می‌‌کند. تاکنون تعاملات بین اندازه­ی پیکسل به ‌صورت محدود بررسی‌شده است. هدف از این تحقیق، بررسی اثر قدرت تفکیک مکانی بر روی پیش‌بینی عمق برف از طریق آزمون تجربی روابط بین مدل‌های رقومی ارتفاع و پارامترهای مؤثر در مدل‌سازی عمق معادل برف با قدرت تفکیک مختلف و با استفاده از مدل رگرسیون چندمتغیره می‌باشد. به همین منظور ابتدا با استفاده از رو...

full text

استفاده از مدل هوش مصنوعی مرکب نظارت شده برای بهبود مدل دراستیک (مطالعه موردی: آبخوان دشت اردبیل)

آلودگی منابع آب زیرزمینی به علت نفوذ آلاینده­ها از سطح زمین به سامانه آب زیرزمینی به‎ویژه در مناطق خشک و نیمه‎خشک که با کمبود کمی و کیفی منابع آب روبه‌رو هستند؛ یکی از معضلات جدی به شمار می­آید. بنابراین ارزیابی آسیب­پذیری آب زیرزمینی به منظور شناسایی مناطق دارای پتانسیل بالای آلودگی برای مدیریت منابع آب زیرزمینی ضروری است. در این پژوهش آسیب­پذیری آبخوان دشت اردبیل در برابر آلودگی با استفاده از...

full text

پیش‌بینی سطح آب زیرزمینی دشت بستان‌آباد با استفاده از ترکیب نظارت شده مدل‌های هوش‌ مصنوعی

آبخوان دشت بستان‌آباد واقع در استان آذربایجان‌شرقی تأمین‌کننده اصلی نیازهای آبی منطقه می‌باشد. با توجه به برخی محدودیت‌های مدل‌های عددی مثل وقت‌گیر و پر‌هزینه بودن و نیاز به داده‌های زیاد، در این تحقیق از مدل‌های هوش مصنوعی شامل شبکه‌های عصبی پیشرو (FNN)، شبکه‌های عصبی برگشتی ‌(RNN) و برنامه‌نویسی بیان ژن (GEP) جهت بررسی تغییرات سطح آب زیرزمینی دشت استفاده شده است. دسته‌بندی پیزومترها به دلیل ن...

full text

پیش بینی نوسانات سطح آب زیرزمینی در آبخوان باروق با استفاده از مدل SOM-AI

قسمت اعظم مساحت کشور از لحاظ جغرافیایی در کمربند خشک و نیمه‌ خشک با بارندگی کم قرار گرفته است. رشد روز افزون جمعیت و محدودیت منابع آبی و استفاده بیش از قبل از منابع آب زیرزمینی در بیشتر نقاط کشور، پیش بینی دقیق مقدار این منابع را به دلیل اهمیت در برنامه ریزی و مدیریت بهینه می‌طلبد. در این تحقیق به منظورتخمین نوسانات سطح آب زیرزمینی آبخوان باروق در استان آذربایجان غربی و محدوده مطالعاتی میاندوآب...

full text

ارزیابی ترکیب ANFIS با تبدیل موجک برای مدل سازی و پیش ‌بینی سطح آب زیرزمینی

One of the most important factors, in a good management in any field, is having a proper perspective of the upcoming events. There is no exception in water resources management and the environment and awareness of the condition of water resources, in an area, plays a decisive role for planning water and agriculture. In this study, the Adaptive Neural Fuzzy Inference System (ANFIS) was used for ...

full text

My Resources

Save resource for easier access later


Journal title:
مهندسی عمران و محیط زیست دانشگاه تبریز

جلد ۴۶، شماره ۸۴، صفحات ۱۰۱-۱۱۲

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023